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De novo peptide sequencing is the process of reconstruct-
ing a peptide sequence directly from a tandem mass spec-
trum and peptide mass. In the past 20 years, different 

de novo peptide sequencing tools have been proposed and suc-
cessful applications have been shown in assembling monoclonal 
antibody sequences1 and identifying tumour-specific antigens, 
especially those resulting from a non-coding region or alterna-
tive splicing2,3. However, it still remains challenging for a de novo 
peptide sequencing tool to discriminate between amino acids 
pairs that have similar masses, for example, glutamine (Q) and 
lysine (K), or methionine sulfoxide (M(Oxi)) and phenylalanine 
(F). For instance, when evaluating the accuracy of de novo pep-
tide sequencing, some previous studies4,5 considered a predicted 
amino acid matching a real amino acid if their mass difference is 
smaller than 0.1 Da and if the prefix masses before them differ by 
less than 0.5 Da. This means, for example, if a de novo sequencing 
tool reports a Q for a ground-truth K, it will still be labelled as 
correct by the evaluation criteria as the mass difference between 
Q and K is smaller than 0.05 Da; however, for antibody sequenc-
ing applications or tumour-specific antigen finding, it is important 
for the de novo sequencing tool to be able to reconstruct the exact 
sequence of a peptide. Otherwise an amino acid difference could 
result in an ineffective drug or vaccine. With recent advances 
in mass spectrometers, the mass accuracy could be improved to 
around 1 ppm. For a fragment ion of mass 1,000 Da, this means the 
measurement error is smaller than 0.001 Da. Such high-resolution 
data allow accurate de novo peptide sequencing.

On the other hand, most existing de novo sequencing tools 
were developed back in the days when the mass error was greater 
than 100 ppm. It is not trivial for those tools to take full advantage 
of the higher precision provided by the latest generation of mass 
spectrometers. For spectrum graph-based methods6–8, a higher 
precision means that less nodes are merged and the generated  

spectrum graph has more vertices, which directly leads to a higher 
computational complexity. Similarly, the complexity of dynamic 
programming-based methods such as PEAKS9 and Novor4 are 
sensitive with respect to the spectrum resolution. For instance, the 
computational complexity of the dynamic programming proposed 
by ref. 10 is inversely proportional to the cube of the finest calibra-
tion of the mass spectrometer. Furthermore, current existing neural 
network-based de novo sequencing models such DeepNovo5 and 
SMSNet11 need to first discretize a spectrum to an intensity vec-
tor (for example, DeepNovo uses a vector with a length of 150,000 
to represent a spectrum when the spectrum resolution parameter 
is set to 50). Long intensity vectors require considerable memory 
and CPU time to create and process. In fact, the GPU is often not 
fully utilized in the original implementation of DeepNovo as the 
program needs to wait for the CPU to build and process such vec-
tors. Both DeepNovo and SMSNet need to discretize spectra with a 
higher spectrum resolution parameter (R) to take advantage of the 
improved precision offered by higher-resolution spectra. The com-
putation and memory demands grow linearly with respect to R for 
these models (that is, complexity of O(R)).

To fully benefit from the high precision that the latest mass 
spectrometers offer, we present PointNovo, a neural network-based 
de novo peptide sequencing tool that does not vectorize the mass 
spectrum. PointNovo is ready to be applied to higher-resolution 
data that may be generated in the future, without any added com-
plexity. Moreover, our experiment results show that PointNovo 
also considerably outperforms previous state-of-the-art methods. 
PointNovo achieves this by directly representing a spectrum as 
a set of m/z values and intensity pairs, and through the use of an 
order-invariant network structure12 to learn from the data of such a 
structure. Figure 1a demonstrates how PointNovo represents input 
spectrum and the extraction of features. More details about the 
model can be found in the Methods.
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Fig. 1 | a, Spectrum representation and feature extraction in PointNovo. b, Accuracy comparisons between the nine species data published by DeepNovo. 
c, Accuracy comparisons between PointNovo and DeepNovo on three high-resolution MS/MS datasets. d, Accuracy comparisons between PointNovo and 
SMSNet on three high-resolution MS/MS datasets. e, Accuracy comparisons between PointNovo and pNovo3 on three high-resolution MS/MS datasets.
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Evaluation metric and datasets
For performance evaluation, we downloaded the nine species data 
used by the original publication of DeepNovo (MassIVE dataset 
identifier: MSV000081382) and applied our model to these data. 
We implement the same leave-one-out cross-validation scheme as 
described in ref. 5, that is, all except one of the nine datasets were 
used to train PointNovo and the trained model is tested on the 
remaining dataset. We used the same evaluation metric adopted by 
DeepNovo and Novor when calculating the amino acid precision, 
amino acid recall and peptide recall, that is, a predicted amino acid 
matching a real amino acid if their mass difference is smaller than 
0.1 Da and if the prefix masses before them vary by less than 0.5 Da. 
For a fair comparison, we used PointNovo with a long short-term 
memory (LSTM) module13, as DeepNovo includes an LSTM mod-
ule by default. The test results and comparison with DeepNovo are 
shown in Fig. 1b. PointNovo outperforms DeepNovo consistently 
at peptide level by a large margin of 13.01–23.95%. We note here 
that DeepNovo reports a slightly lower amino acid recall but a 
higher peptide recall rate than PEAKS in the cross-species train-
ing for humans; similar results are also observed for PointNovo. 
We suggest that this is due to some peptides from the test set also 
appearing in the training set in the cross-species training scheme. 
The LSTM modules in PointNovo and DeepNovo will be trained 
to predict the sequences that existed in the training set. It might 
be a desired property in some applications (for example, training 
an allele-aware de novo sequencing model for human leucocyte 
antigen (HLA) peptides14), but it is not the best practice for evalu-
ating machine learning models. To better compare our proposed 
model with DeepNovo, SMSNet and pNovo15, we collected three 
high-resolution tandem mass spectrometry (MS/MS) datasets pro-
vided by different laboratories (HeLa samples from the Association 
of Biomolecular Resource Facilities (ABRF), ProteomeXchange 
dataset with the identifiers of PXD00884416 and PXD01055917). 
We first ran a database search using PEAKS X on each of the three 
datasets. The post-translational modifications (PTMs) settings are 
included in the Methods. The peptide-spectrum matches (PSMs) 
identified at 1% false discovery rate in each dataset are split into 

training, validation and test sets at a ratio of 8:1:1. We ensured that 
no common peptide sequences were shared among the aforemen-
tioned sets during the split. Two PointNovo models (with and with-
out LSTM) and two DeepNovo models (with and without LSTM) 
were then trained from scratch on the training set for each of the 
three high-resolution MS/MS datasets. The weights that show the 
best validation loss during training were saved as the trained model 
weights. Finally, trained models were evaluated on the test set. The 
amino acid level accuracy, amino acid level recall and peptide level 
recall on the test set are reported in Fig. 1c. PointNovo improves 
at peptide level recall by 15.05–23.32% when an LSTM module is 
included, whereas PointNovo outperforms DeepNovo by 25.61–
31.94% when an LSTM module is not included. In a procedure sim-
ilar to the above experiments, we also compared PointNovo with 
SMSNet (the results are shown in Fig. 1d). As PointNovo does not 
contain any post-processing, we applied SMSNet without rescoring 
in this comparison11. Due to a limitation of SMSNet, all PSMs that 
contain PTMs other than carbamidomethylation of C or oxidation 
of M are removed from our datasets. As a result, the training, vali-
dation and test sets are slightly different from previous experiments 
and that is the reason why accuracies of PointNovo reported in  
Fig. 1d are different from those reported in Fig. 1c. In cases  
without rescoring, we notice that SMSNet sometimes predicts 
exceptionally long sequences for spectra of poor quality. The exis-
tence of such long sequences undermines the amino acid level 
accuracy; the peptide level recall metric therefore shows a better 
performance comparison between the two models. Nevertheless, 
PointNovo outperforms SMSNet (without rescoring) at peptide 
level by over 17%. We would like to point out that the contribu-
tion of sequence-mask-search made by SMSNet is orthogonal to the 
improvement made by PointNovo. A similar post-processing could 
be applied to the output of PointNovo. In Fig. 1e we show the com-
parison results between PointNovo and pNovo. To the best of our 
knowledge, pNovo3 with spectral prediction15 has not been released 
for users; we downloaded the most recent pNovo release (v.3.1.3) 
and compared it with PointNovo. As pNovo is distributed as pre-
trained software, we cannot adopt the same training procedure as 
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Fig. 2 | a, Precision–recall curves for amino acids pairs with similar mass on test spectra from PXD008844. b, Precision–recall curves for amino acids pairs 
with similar mass on test spectra from PXD010559. The values labelling the curves are average precision values.
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the previous experiments as that would give PointNovo an unfair 
advantage. To make a fair comparison, we collected four other 
high-resolution MS/MS datasets: PXD00880818, PXD01124619, 
PXD01264520 and PXD01297921. We trained PointNovo without 
an LSTM model on the identified PSMs of these four datasets and 
applied the trained model to the test sets of the ABRF, PXD008844 
and PXD010559 datasets. In this experiment, we again exclude all 
PSMs that contain PTMs other than carbamidomethylation of C or 
oxidation of M from the training and test sets as we need to apply 
the same trained model to all three test sets. Figure 1e shows that our 
trained PointNovo without-LSTM model outperforms pNovo by 
more than 25.5% at peptide level. More interestingly, the PointNovo 
performance gap between Fig. 1d and Fig. 1e gives us an estimate of 
the generalizability of our proposed model. The metrics reported in 
Fig. 1d represent the performance in the best-case scenario, where 
the training spectra are acquired in the same experimental set-
ting as the test spectra (for example, different fractions of the same 
sample). The results of Fig. 1e also represent the performance in 
the normal scenario, in which training spectra are collected from 
multiple experiments conducted by different laboratories. Above 
all, our results as shown in Fig. 1b–e demonstrate that PointNovo 
consistently outperforms DeepNovo, SMSNet (without rescoring) 
and pNovo on all three different test sets. Here we would like to 
again explain that although the results shown in Fig. 1c–e are from 
the same test datasets, these results cannot be merged as the three 
experiments are conducted in different settings (that is, different 
PTMs included, different training datasets) for the purpose of mak-
ing a fair comparison.

Better discrimination of amino acids of similar masses
To further demonstrate that our proposed PointNovo model could 
take full advantage of the high-resolution data and better discrimi-
nate between amino acids pairs that have similar masses, we calcu-
late the precision and recall for amino acid pairs F and M(Oxi) (the 
mass difference is smaller than 0.035 Da), Q and K. In this analysis, 
a predicted amino acid is considered as matching the ground-truth 
amino acid in the target sequence if (and only if) the amino acids 
are exactly the same and the prefix masses before them vary by less 
than 0.5 Da. Both DeepNovo and PointNovo are trained without the 
LSTM modules, as we want to compare their ability of learning from 
spectra and not their ability to remember the sequence patterns. 
The precision–recall curves for two datasets are shown in Fig. 2a,b. 
PointNovo improves the average precision for all four amino acids, 
which are notorious for being hard to discriminate. Specifically, 
for amino acid Q and M(Oxi), we observe a significant improve-
ment of more than 15%. Extended Data Fig. 1 shows Venn diagrams 
of the peptide sets identified by PEAKS X (database search), pre-
dicted by PointNovo and DeepNovo on the ABRF, PXD008844 and 
PXD010559 datasets. Following the practice introduced in ref. 22, 
we filtered the de novo peptides on the basis of their peptide scores 
given by the models. Peptide score cut-offs are selected so that the 
amino acid accuracy is 90%. The intersection between two sets 
represents peptides of the exact same amino acid sequence. As can 
be seen from Extended Data Fig. 1, PointNovo’s prediction always  
covers more peptides identified by PEAKS X than DeepNovo.

Finally, to show that PointNovo can potentially benefit from the 
improved precision of higher-resolution spectra generated in the 
future, we simulate low-resolution spectra of the ABRF, PXD008844 
and PXD010559 datasets. PointNovo’s performance on these spec-
tra is reported in Extended Data Fig. 2. The low-resolution spec-
tra are generated by adding random parts-per-million errors 
(ϵ ≈ U(−10,10)) to the m/z value of every peak in original spectra 
datasets. PointNovo is then trained and tested on the jittered train-
ing and test spectra. The comparison results in Extended Data  
Fig. 2 demonstrate that we could indeed expect better performance 
on higher-resolution spectra with PointNovo.

The above results demonstrate that PointNovo outperforms pre-
vious state-of-the-art de novo peptide sequencing tools by a signifi-
cant margin and could better discriminate between similar amino 
acids pairs. Also, unlike previous neural network-based de novo 
peptide sequencing tools, PointNovo does not include any spectrum 
vectorization. It is thus ready to be applied to the more precise mass 
spectrometry data generated in the future.

Methods
Spectrum representation. In DeepNovo and SMSNet, spectra are represented 
as intensity vectors, where each index of the vectors represents a small m/z bin 
and the value represents the sum of intensities of all peaks that fall into that bin. 
This representation of spectra naturally has the problem of accuracy and speed/
memory trade-off. In PointNovo, we propose to directly represent a spectrum 
as a set of (m/z, intensity) pairs. For each spectrum we select the top N most 
intense peaks (by default N = 1,000) and represent the spectrum as {(m/zi, Ii)}Ni=1. 
Further, we denote Mobserved = (m/z1, · · · , m/zN) as the observed m/z vector and 
I = (I1, · · · , IN).

Feature extraction. Aside from the 20 amino acid residues and their PTMs, we 
also include three special tokens denoted start, end and padding in our model’s 
vocabulary set. We denote the number of tokens (including amino acid residues 
and PTMs) as v and the number of ion types as k. PointNovo uses the twelve 
types of ion (k = 12): b, y, a, b(2+), y(2+), a(2+), b-H2O, y-H2O, a-H2O, b-NH3, 
y-NH3 and a-NH3. At each prediction step, we compute the theoretical m/z 
values for each token and ion-type pair. The result is a matrix of shape (v,k), 
which is denoted Mtheoretical. We next expand the dimension of Mobserved to make it a 
three-dimensional tensor of shape (N,1,1), and then repeat Mobserved on the second 
and third dimensions v times and k times, respectively. The result is denoted as 
M′

observed, which is a tensor of shape (N,v,k). Similarly, we expand Mtheoretical to the 
shape of (1,v,k), repeat it on the first dimension N times and denote the result as 
M′

theoretical. We can then compute the m/z difference tensor (D), in which each 
element represents the difference between the m/z value for an observed peak and 
the theoretical m/z for a token and ion-type pair.

D = M′

observed − M′

theoretical

It is worth noting that the above equation could be computed efficiently by 
using the broadcast behaviour in popular deep learning frameworks such as 
Tensorflow23 and PyTorch24.

Based on the expert knowledge of de novo peptide sequencing9, we design an 
activation function σ:

σ (D) = exp {− |D| × c}

Here the exponential and absolute operations are all element-wise operations. 
The intuition for σ is that an observed peak could only be considered matching a 
theoretical m/z location if the absolute m/z difference is small. For example, if we 
set c = 100, then an observed peak that is 0.02 Da away from a theoretical location 
would generate a signal of e−2 ≈ 0.135, which is only one-seventh of the signal of a 
perfect match. In our experiments we tried setting c to a trainable parameter and 
updating it through backpropagation. It shows similar performance with setting 
c = 100. We set c = 100 in all of the experiments reported in this manuscript for 
better model interpretability; however, setting c to a learnable parameter would 
require less past knowledge about the resolution of training spectra and might be 
preferable in certain cases.

We next reshape the N by v by k tensor σ(D) to a matrix σ(D)′ of shape N by 
vk, reshape I to a N by 1 vector I′. Finally, the feature matrix F used for predicting 
the next amino acid is simply the concatenation of σ(D)′ and I′:

F = σ (D)
′

⊕ I′

Here ⊕ represents concatenation along the second dimension. The output F is 
a matrix of shape N by vk + 1.

A spectrum is a set of (m/z, intensity) pairs, which means the order of 
peaks should be irrelevant. The prediction network should therefore have an 
order-invariant property with respect to the first dimension of F. To the best  
of our knowledge, T Net (Structure is shown in Extended Data Fig. 3) is the 
first model designed for this kind of order-invariant data. It demonstrated 
state-of-the-art performance on the point-cloud classification task12. We  
therefore apply T Net to learn from the feature matrix F. The global max pooling 
operation in T Net guarantees that the output would not change for any row 
permutations of F.

We experimented using parts per million m/z difference instead of absolute 
difference in matrix F. The experimental result shown in Extended Data Fig. 4  
suggests that on these Fusion Lumos datasets that we collected, the parts-per-million 
difference method and absolute difference method gives very  
similar results.
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Initial state for LSTM. The LSTM module is an optional component in PointNovo. 
In some applications (for example, training an allele-aware de novo sequencing 
model for HLA peptides) it might be desirable for the model to remember some 
peptide sequence patterns. In such cases we can include an LSTM module in 
PointNovo. The full model structure of PointNovo (both with and without an 
LSTM module) is shown in Extended Data Fig. 5.

We need to initialize the hidden states of LSTM with information from the 
original spectrum. Inspired by the success of positional embedding introduced 
by Vaswani and colleagues25, we choose to embed each peak into a vector. The 
input spectrum is first discretized at 0.1 Da resolution. When applied to the 
without-LSTM case, the discretization step is not needed.

We next create a sinusoidal m/z positional embedding matrix E in the way 
suggested by25:

E
(loc,2j−1) = sin

(
loc/10, 000

2j−2
512

)

E
(loc,2j) = cos

(
loc/10, 000

2j−2
512

)

∀j ∈ {1, 2, ..., 256}

Here loc represents the m/z index after discretization. We use El to denote the 
lth row vector E. The sinusoidal embedding has a desired property that for any 
distance d, Eloc+d could be represented as a linear function of Eloc. This property is 
important because in mass spectra the m/z differences between observed peaks 
contains useful information that indicates which amino acids possibly exist.  
For an input spectrum {(m/zi, Ii)}Ni=1, we denote loci to represent the index of m/zi 
after discretization and we use IiEloci as the vector representation of the ith peak.  
A spectrum representation vector S can then be generated by taking the 
summation of the vector representations of all peaks:

S =

N∑

i=1
IiEloci

We multiplied the intensities with the embedded peak vectors because we 
think the effect of a single peak, in the representation of a spectrum, should be 
proportional to its intensity. Finally, the hidden states of the LSTM module are 
initialized to S.

Post-translational modifications settings. For the ABRF dataset we set 
carbamidomethylation of C as fixed modification, oxdiation of M and 
deamidation of NQ as variable modification. For the PXD008844 dataset we set 
carbamidomethylation of C as fixed modification, oxdiation of M as variable 
modification, whereas for PXD010559 we set carbamidomethylation of C as fixed 
modification and oxdiation of M, deamidation of NQ and phosphorylation of STY 
are set as variable modification.

Training and searching. As suggested in ref. 22, we used focal loss26 instead of 
cross-entropy loss when training the model. We trained PointNovo with the Adam 
algorithm27 and an initial learning rate of 10−3. After every 300 training steps, the 
loss on validation set is computed. If the validation loss has not achieved a new low 
in the recent ten evaluations then the learning rate would be dropped by half. We 
applied the beam search algorithm for the searching part. Similar to DeepNovo, 
PointNovo uses knapsack algorithm to reduce the search space.

Applying trained PointNovo model on a dataset with different peptide patterns. 
In the without-LSTM mode, PointNovo extract most information directly 
from the MS/MS spectra. It is thus possible (although not the best practice) to 
apply a trained PointNovo model to a dataset with peptides of totally different 
sequence patterns. We downloaded a HLA peptide dataset to demonstrate this28. 
A PointNovo without-LSTM model is trained on the identified PSMs of patient 
Mel 15 data and then applied to patient Mel 16. The two patients do not share any 
common HLA alleles, which means the sequence patterns of the HLA peptides are 
different. Extended Data Fig. 6 demonstrated that although the PointNovo model is 
trained on a relatively small dataset with different sequence patterns from the test 
set, it can still achieve a comparable performance with PEAKS de novo. Moreover, 
we downloaded another HeLa sample dataset processed by multiple different 
enzymes29 and report the cross-enzyme testing performance in Extended Data  
Fig. 7. We need to point out here that although the PointNovo without LSTM 
model does not remember sequence patterns, it would still learn the overall 
amino acid distribution from training peptides. The best practice in application is 
therefore to train a separate model for each enzyme.

Speed of PointNovo. On an RTX 2080 Ti GPU, a training step (batch size 16) takes 
around 0.4 s; for inference (that is, de novo peptide sequencing), PointNovo (with 
LSTM) can process around 20 spectra per second. Without LSTM, PointNovo can 
perform de novo peptide sequencing on more than 70 spectra in one second.

Data availability
The source data for all experiments reported by this paper are accessible through 
the following link: https://zenodo.org/record/3998873 (ref. 30).

Code availability
The source code of PointNovo is in this github repo: https://github.com/volpato30/
PointNovo (ref. 31).
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Extended Data Fig. 1 | Set of peptides predicted by PointNovo and DeepNovo, comparing with the set of peptides identified by PEAKS DB. Set of 
peptides predicted by PointNovo and DeepNovo, comparing with the set of peptides identified by PEAKS DB. Both DeepNovo and PointNovo are trained 
without the LSTM modules. Peptide score cutoff is applied to the results given by PointNovo and DeepNovo. We select the cutoff scores so that the amino 
acid accuracy of the remaining predicted peptides is 90%. Here, the overlap between two sets represents the peptides that are exactly the same (that 
is same amino acid residue sequence). Thus, the peptide recall is different from the number reported in Fig. 1, where a predicted amino acid residue is 
considered to be correct if the mass difference with the ground truth is smaller than 0.1 Da.
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Extended Data Fig. 2 | Performance of PointNovo on jittered spectra. Performance of PointNovo on jittered spectra. To jitter the spectra, we add uniformly 
distributed random ppm errors to the m/z value of every peak in the original datasets. These jittered spectra could be considered as spectra of lower 
resolution.
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Extended Data Fig. 3 | Structure of T Net. Structure of T Net. The output shape of each layer is annotated below each block. Here N denotes the number 
of data points. v and k are defined in the feature extraction section of online method. Hi represent the number of hidden neurons in each hidden layer, 
which are hyper parameters that can be turned by the users.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell


ArticlesNaTurE MacHinE InTElligEncE ArticlesNaTurE MacHinE InTElligEncE

Extended Data Fig. 4 | Comparison of using absolute m/z diff and ppm m/z diff. Here the PointNovo models are trained on the combination of 4 
datasets: PXD008808, PXD011246, PXD012645 and PXD012979.
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Extended Data Fig. 5 | Structure of PointNovo. Structure of PointNovo. (a) PointNovo without LSTM. (b) PointNovo with LSTM.
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Extended Data Fig. 6 | Comparison with PEAKS de novo on patient Mel 16 data. The PointNovo model here is trained on Mel 15 data, which has different 
peptide sequence pattern comparing with Mel 16 data.
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Extended Data Fig. 7 | Cross-enzyme performance of PointNovo without LSTM model on PXD004452 data. PXD004452 dataset contains Hela samples 
digested by different enzyme. For each enzyme, we first ran database search peptide sequencing. The identified PSMs at 1% FDR are then split to training, 
validation and test set according to the ratio of 8:1:1. Separate PointNovo without LSTM models are trained for each enzyme and the cross-enzyme 
performance on test set is reported here.
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